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Abstract—The study of temporal sequences is a main topic in
different domains, especially for human mobility mining. This
article defines the Fuzzy Temporal Hamming (FTH) distance
between temporal sequences. This new measure generalises the
Hamming distance and improves it by introducing a fuzzy time-
window. This fuzzy approach tolerates temporal distortions as
shifting and permutations. Moreover, the time computation of
FTH is competitive with other Optimal Matching methods used
for temporal sequences comparison. To validate this approach,
we cluster data from a real Time-Use Survey and we compare
the results obtained with other methods.

Index Terms—Context awareness, Data mining, Fuzzy ap-
proach, Hamming distance, Temporal sequence, Time-Use Survey

I. INTRODUCTION

A temporal sequence is a particular type of sequence where
each symbol is associated to a time duration. This chronolog-
ical representation of elements is used in a wide variety of
domains including biology, sociology, economics, geography
or signal processing. In particular, in human mobility mining
temporal sequences are largely used to represent human daily
mobility using time-stamped activities [12]. Therefore, these
data are particularly used to identify and understand human
mobility behavior, for example, with the aim to design smart
cities, improve urban planning or target advertising. Experts
define complex queries as how to cluster temporal sequences
with close-order set of activities or how to extract patterns of
human behavior. The comparison of temporal sequences plays
a key role in the resolution of these complex problems.

In this paper we deal with the comparison of temporal se-
quences for supporting the analysis of human mobility. Many
measures have been proposed to compare such sequences
like Optimal Matching methods [1], Edit Distance [22] or
Hamming distance [13]. Indeed, the latter is largely used for
comparing equal-length sequences due to its simplicity and
computation speed. Just for a reminder, the Hamming distance
is commonly defined such that as the number of mismatches
between the two sequences. For example Hpfuzzy, foggyq=3.

In mobility mining, Hamming distance has been used to
identify daily mobility behaviors [17], [23] in particular, those
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concerning the same activities at the same time. However
other mobility properties should be taken into account: Firstly,
humans have a strong tendency to return to the same locations
or activities [28], [29], their movements are characterized by a
certain form of redundancy [25] and particular activities start
in a given fuzzy time-window [15]. Moreover, the timing of
many human activities are characterized by bursts of rapidly
occurring events separated by long periods of a same activity
[2] (e.g., working or staying at home). Taking these elements
into account, the Hamming distance seems too time sensitive
to be effective for this usage. In particular, [10] claims that
a good similarity measure on temporal sequences must be
robust to time distortions and be able to catch the context,
i.e. detect similar activities in a given imprecise time-period
(e.g., afternoon, morning).

Therefore, fuzzy representations can be considered to tackle
this issue, as they proved robust in several applications. While
the comparison of fuzzy intervals is a difficult issue [7], [8],
[26] fuzziness can also be a solution for comparing imperfect
time series [3].

In this paper we propose a fuzzy generalization of the
Hamming distance considering continuous time representation
and contextual information. Notice that we propose a fuzzy
comparison of temporal sequences and not fuzzy temporal
sequences nor fuzzy time series. Our idea is to consider the
cost of edit operations (transformation of symbols) instead of
just counting mismatches. Such cost is context dependent and
should be considered in a fuzzy temporal neighbourhood. By
this consideration, our problem does not fall in the usual fuzzy
temporal period comparison issue.

Several works have proposed a fuzzy approach of the
Hamming distance, in various ways. For example, [9], [11],
[14] propose generalisations which take into account real-
valued vectors and not only binary strings. The closest work
to our contribution is [5] which proposed an extension of
Hamming concept to give partial credit for near misses in
binary strings. However, these works are only designed for
discrete series of values and not for continuous time-intervals.
Therefore, to the best of our knowledge, we are the first to
propose a distance which both, takes into account continuous
aspects of temporal sequences and quantifies a fuzzy notion
of time and semantic neighborhood of symbols in sequences.
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Contributions: In this paper we propose Fuzzy Temporal
Hamming (FTH), a generalisation of the Hamming distance
for the comparison of temporal sequences. We use the softness
of fuzzy logic to catch context dependencies of temporal se-
quences of activities. In particular, FTH respects the following
requirements:

‚ It can deal with continuous temporal sequences.
‚ Symbols are compared using a similarity measure for

catching the context.
‚ It is robust to temporal distortions:

– Small time shifts produces small costs.
– The cost of permutations of two symbols is smaller

than the cost of transformation of two symbols.
– The cost of repetition and time expansion of symbols

is small according to the context (i.e., if they are
temporally close and similar).

The remainder of the paper is organized as follow: Section
II introduces the preliminaries on temporal sequences and
provides a concise review of related work on measures for
temporal sequences. The fuzzification of the Hamming dis-
tance is described in Section III. Running examples complete
the section to illustrate the usefullness and the properties of our
proposition. In Section IV, we validate FHT on both, a fictive
and a real dataset. Section V concludes with perspectives.

II. BACKGROUND

This section introduces some preliminary knowledge on
sequences and temporal sequences. In a first part, we extend
classical definitions of sequences to a continuous time interval
framework and illustrate the problem of temporal sequences.
The second part presents the classical methods used to com-
pare sequences and temporal sequences, their properties and
their limits.

A. Preliminaries

Let Σ be a finite set of symbols (e.g. daily activities),
sim : Σ ˆ Σ Ñ r0, 1s a similarity function over Σ and
I “ r0, Tmaxq, Tmax ą 0 the time interval for expressing
temporal sequences.
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Fig. 1. Similarity between symbols of Σ, empty cells denote a similarity
equal to 0.

In order to illustrate our proposal, Fig. 1 lists 7 activities
(Σ) and their pair-wise similarity (sim). We consider that Tmax

represents a day (1440 minutes).

Definition 1 (TEMPORAL SEQUENCE). A temporal sequence
Si is an ordered sequence of symbols with durations such that:

Si “ xpxi1, δi1q, ..., pxin, δinqy

where @k P rr1, nss, xik P Σ and δik ą 0 such that δik
indicates the duration of activity xik (expressed in units of
times, e.g. minutes). Si respects the two following properties:

‚ There is no successive identical symbols i.e., @k P rr1, n´
1ss, xik ‰ xipk`1q

‚ The sum of all durations is equal to Tmax i.e.,
řn
k“1 δik “

Tmax

Intuitively, such a sequence indicates that an individual
performed activity x1 for δ1 units of time, then x2 for δ2
units of time, ..., and finally xn for δn units of time.

We note S the set of all temporal sequences and Sn the set
of all temporal sequences with n symbols.

Figure 2 represents the abstraction of temporal sequences
and key concepts in Definition 1.

Tmax

Si =
xi1 xi2 xi3 xi4

�i4�i2 �i3�i1

Fig. 2. Abstraction of a temporal sequence

Example 1. We can represent Alice’s daily activities thanks
to the following temporal sequence:

Salice “ xp!, 210q, p !, 20q, p !, 10q, p!, 250q, p !, 15q,

p !, 60q, p !, 15q, p!
"#
, 290q, p!, 570qy

According to the emojis pictured in Fig. 1, the sequence Salice
formalizes the following daily mobility: Alice stayed at home
(!) for 210min, then took the tramway ( !) for 20min and
walked ( !) for 10min. She worked at her office (!) for
250min. She walked for 15min and had lunch at restaurant
( !) for 40min. She returned by bus ( !) for 15min and

worked at home (!"
#

) for 290min. Finally, she stayed at home
the rest of the day.

Definition 2 (TIME INTERVAL). Consider a temporal se-
quence Si. The time interval Ipxikq for symbol xik in Si,
is defined such that:

Ipxikq “ rbeginpxikq, endpxikqq

where:

‚ beginpxikq “
řk´1
j“1 δij

‚ endpxikq “
řk
j“1 δij “ beginpxikq ` δik

Therefore, for k1 ‰ k2, we have: Ipxik1q X Ipxik2q “ H and
Ťn
k“1 Ipxikq “ I



TABLE I
TIME COMPLEXITY OF MEASURES

Method Time complexity
On sequences On temporal sequences

Hamming Opnq O pTmaxq

LCSS, DTW, ED Opnˆ pq O
`

T 2
max

˘

CED Opnˆ pˆmaxpn, pqq O
`

T 3
max

˘

B. Related work

Many similarity measures have been proposed or adapted
for comparing sequences of symbols. Most of them are part of
Optimal Matching algorithms family [1] which were designed
originally for DNA sequence alignment [27].

In Computer Science, the main used measures for sequence
comparison are Longest Common Subsequence (LCSS) [19],
Dynamic Time Warping (DTW) [4] and Edit Distance (ED)
[18] (e.g., Levenshtein distance). They are computed effi-
ciently using the dynamic programming approach [30] which
guarantees a time complexity in Opn ˆ pq where n and p
are the lengths of the two compared sequences. Contrary to
the Hamming distance, these measures are robust to time
distortions but they do not support permutations of close
symbols or cyclicity in sequences. Recently, an extension of
the Edit Distance, the Contextual Edit Distance (CED) [21],
proposes to take into account such requirements by modifying
the cost function of the edit operations.

Nevertheless, all of these approaches are designed for
discrete and non-continuous sequences which does not offer
sufficient flexibility in a time framework. Therefore, to apply
these algorithms, temporal sequences must be discretized
by repeating a symbol as many times as its duration. For
example, a temporal sequence Si “ xpa, 3q, pb, 1q, pc, 2qy will
be discretized such as xaaabccy.

Thus, for temporal sequences defined on a large time
interval (e.g. a day) and with a small unit of time (e.g.
minutes), the computation time becomes significant. Table I
shows the time complexity of the previous described methods
on classical sequences and temporal sequences.

III. A FUZZY APPROACH OF HAMMING DISTANCE FOR
TEMPORAL SEQUENCE

This part of the section presents the fuzzification of the
Hamming distance to take into account a temporal neighbour-
hood during the process of sequence comparison. In particular,
we introduce here the concepts of edit operation, which defines
the transformation of a part of a sequence, and the fuzzy
context function, which quantifies a fuzzy temporal context
neighborhood around the edit operation. Finally, a cost is
assigned to an edit operation. The fuzzy Hamming distance
on temporal sequences is defined as the maximum sum of
costs to transform one sequence into another.

A. Edit operation formalisation

We define here the concept of an edit operation:

Definition 3 (EDIT OPERATION). An edit operation e is a
4-tuple defined such that:

e “ px, δ, tedit, Siq P Σˆ I ˆ I ˆ S

This means that we replace symbols in Si, by symbol x, at
time tedit, for δ units of time.

Tmax

Si =
xi1 xi2 xi3 xi4

xi4xi1 xi3x
tedit tedit + �

Fig. 3. Edit operation on a temporal sequence. We replace all symbols from
tedit to tedit ` δ in Si by x.

We note E the set of all edit operations. Fig. 3 represents
the abstraction of the edit operation given in Definition 3.

Definition 4 (FUZZY CONTEXT FUNCTION). Given an edit
operation e “ px, δ, tedit, Siq, the fuzzy context function µe :
I Ñ r0, 1s is a fuzzy function defined for an edit operation e
and such that the core Corepµeq “ tt|t P I, µeptq “ 1u “
rtedit, tedit ` δq.

Intuitively, the fuzzy context function is used to quantify
the temporal hold of an edit operation over the sequence Si.
Therefore, the hold is equal to 1 between tedit and tedit ` δ,
then decreases on both sides of the interval.

Definition 5 (SIMILARITY OVER Si). Given an edit operation
e “ px, δ, tedit, Siq, the similarity function over Si, sime :
I Ñ r0, 1s is defined such that:

simeptq “
n
ÿ

k“1

1Ipxikqptq ˆ simpxik, xq (1)

where 1A is the indicator function on I for a subset A Ď I

defined such that 1Aptq “

#

1 if t P A
0 else

.

The key concept in Equation 1 is that, at time t, we compute
the similarity between x and the symbol xik that occurs at such
time, i.e. for t P Ipxikq. Therefore, it results a step function
which is a linear combination of indicator functions weighted
by the similarity of the two activities over the time interval I .

Example 2. Consider the edit operation e “

p!, 480, 270, S1q where S1 is the sequence described
in example 1. The Fig. 4 shows the functions µe and sime of
the edit operation e.

The red function shows a fuzzy contextual function µe with
a boundary of two hours (240min).

The blue function shows the similarity function over S1 with
the edited activity !. Remark that simeptq is equal to 1 for
t P r240, 490q when Alice works at her office (!), to 1

2 for

t P r580, 870q when she works at home (!"
#

) and 0 elsewhere.

B. Cost operation formalisation
Thanks to the previous definitions and in order to design a

dissimilarity index between semantic temporal sequences, we
assign a cost of application of an edit operation.
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Definition 6 (γ NORMALIZED COST). Given an edit operation
e “ px, δ, tedit, Siq, the function γ : E Ñ r0, 1s is the
normalized cost function of the application of e. It is defined
such that:

γpeq “ 1´ sup
τPI

#

1

δ

ż τ`δ

τ

simeptq ˆ µeptqdt

+

(2)

The Equation 2 is strongly inspired from the edit cost
function defined in [21]. Indeed, the context is considered as
similar if the simeptq ˆ µeptq « 1 i.e., the edited activity x
is temporally close to a similar one in Si. Therefore, the key
idea is, given an edit operation, to search the temporal segment
rτ, τ`δq over I which maximizes both similarity of the edited
symbol x and the fuzzy contextual function.

At the computational level, the Equation 2 is equivalent to
calculating the supremum of the convolution product between
simeptqˆµeptq and the function 1r0,δq which can be computed
efficiently in OpTmax log Tmaxq using Fast Fourier Transform
algorithms [16].

Example 3. Consider the edit operation presented in Example
2. Fig. 5 shows the application of the γ function for e “
p!, 480, 270, Saliceq. The supremum in equation 2 is achieved
for τ “ 240 then, we have

ş720

240
simeptq ˆ µeptqdt “ 318.21.

Finally, γpeq “ 1´ 318.21
480 “ 0.34
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Fig. 5. Application of γpeq

Lemma 1. Given an edit operation e “ px, δ, tedit, Siq, we
have γpeq “ 0 ô Dk P rr1, nss, rtedit, tedit ` δq Ď Ipxikq and
such that xk “ x.

Proof. We have:

γpeq “ 0 ô Dτ P I,

ż τ`δ

τ

simeptq ˆ µeptqdt “ δ

ô Dτ P I,@t P pτ, τ ` δq, µeptq “ 1, simeptq “ 1

Yet, according to Definition 4, we have: µeptq “ 1 ô

t P rtedit, tedit ` δq. Then, we know τ “ tedit. Similarly:
simeptq “ 1 ô Dk P rr1, nss, t P Ipxikq and xik “ x which
concludes the proof.

Lemma 2. Given an edit operation e “ px, δ, tedit, Siq. We
have: limδÑ0 γpeq “ 1´ suptPItsimeptq ˆ µeptqu

The underlined property in Lemma 2 shows that even tiny-
time symbols can have an important cost in the edition process.
Indeed, depending some business needs, we claim that short-
time symbols are equally important than long-time symbols
and the cost function must be normalized in r0, 1s like the γ
function. This is particularly true when the duration of symbols
is highly unbalanced, for example, in the context of mobility
where few activities concentrate a large part of the time during
a day (e.g., home and work).

However, most of dissimilarities discussed in Section II-B
give a high weight for long-duration activities and, conversely,
short activities are found to have a negligible weight compared
to the latter.

Aware that this usage depends on the applications, we also
propose a function that weights the cost according to the
duration of the edited symbol.

Definition 7 (∆ TIME-WEIGHTED COST). Given an edit
operation e “ px, δ, tedit, Siq, the function ∆ : E Ñ R` is
the time-weighted cost function of the application of e. It is
defined such that:

∆peq “ δ ˆ γpeq (3)

Thanks to this weighting, the ∆ cost function respects the
following properties:

Lemma 3. For all edit operation e P E, 0 ď ∆peq ď δ

Theorem 1. ∆ is a monotone function for the time duration
δ i.e., given two edit operations e “ px, δ, tedit, Siq and e1 “
px, δ1, tedit, Siq such that δ ď δ1, then ∆peq ď ∆pe1q.

Proof. See Appendix.

The Theorem 1 reflects the intuitive fact that, under the
same editing conditions, the longer an activity is edited, the
higher the editing cost.

C. Fuzzy Temporal Hamming between temporal sequences

Finally, thanks to edit operation cost functions, we can
design a dissimilarity index between two temporal sequences.

Definition 8 (ONE-SIDED FUZZY TEMPORAL
HAMMING). Given two temporal sequences
S1 “ xpx11, δ11q, ..., px1n, δ1nqy and S2 “

xpx21, δ21q, ..., px2p, δ2pqy, the one-sided Fuzzy Temporal



TABLE II
COMPARISON OF MAIN PROPERTIES OF MEASURES ON TEMPORAL SEQUENCES

Method Properties
Metric Semi-metric Temp. disto. Permut. Fuzzy context Sim. Continuous Time Complexity

Hamming ˆ ˆ: O pTmaxq

LCS ˆ O
`

T 2
max

˘

DTW ˆ ˆ: O
`

T 2
max

˘

ED ˆ; ˆ ˆ; ˆ: O
`

T 2
max

˘

CED ˆ ˆ ˆ ˆ ˆ O
`

T 3
max

˘

FTH ˆ ˆ ˆ ˆ ˆ ˆ Opmaxtn, puTmax log Tmaxq

:By default discrete metric ρpx, yq “

#

0 x “ y

1 else
; Only transpositions in [6] variant. The triangle inequality does not hold in this case.

Hamming from S1 to S2,FTHS1ÑS2
: Sn ˆ Sp Ñ R` is

defined such that:

FTHS1ÑS2 “

n
ÿ

i“1

∆peiq (4)

where ei “ px1i, δ1i,beginpx1iq, S2q.

Equation 4 is the total cost in order to transform the
temporal sequence S1 into S2. It must be noted that the
symmetry does not hold for FTHS1ÑS2

.

Example 4. Let us represent Bob’s daily activities as follows:

Sbob “ xp!, 230q, p !, 10q, p !, 30q, p!, 480q, p !, 60q,

p!, 630qy

We compute FTHSaliceÑSbob
“ 252.31. As the reverse,

FTHSbobÑSalice
“ 280.22.

Theorem 2. FTHS1ÑS2
is bounded by Tmax.

Proof. By the Lemma 3, we know that for all edit operator
e P E,∆peq ď δ. Consequently, and thanks to Definition 8,
we know that FTHS1ÑS2

ď
řn
i“1 δ1i

Yet, thanks to Definition 1,
řn
i“1 δ1i “ Tmax which con-

cludes the proof.

Note that the Theorem 2 can be interesting in order to
normalize the dissimilarity in r0, 1s.

Lemma 4. FTHS1ÑS2 respects the identity of indiscernibles:
@S1, S2 P S,FTHS1ÑS2

“ 0 ô S1 “ S2

Proof. See Appendix.

Finally, to recover the symmetry, we applied a J-conorm
between the two one-sided fuzzy temporal distance.

Definition 9 (FUZZY TEMPORAL HAMMING). Given two
temporal sequences S1 P Sn and S2 P Sp, the Fuzzy Temporal
Hamming measure FTH : SnˆSp Ñ R` between S1 and S2

is defined such that:

FTHpS1, S2q “ max tFTHS1ÑS2 ,FTHS2ÑS1
u (5)

Theorem 3. pFTH,Sq is a semi-metric space.

Proof. By construction, from Definition 9, the symmetry of
FTH is already satisfied. Also, thanks to Lemma 4 which

shows FTHS1ÑS2
respects identity of indiscernibles, then the

identity of indiscernibles holds immediately for FTH.

Theorem 4. If for all e P E the support of the fuzzy context
function Supppµeq “ Corepµeq, then FTH is equivalent to
the Hamming distance.

Proof. See Appendix.

Theorem 5. Given two temporal sequences S1 P Sn and
S2 P Sp, the computation time of FTHpS1, S2q is in
O pmaxtn, puTmax log Tmaxq

Proof. We see in Definition 6 that Equations 2 and 3 can be
computed in OpTmax log Tmaxq. Therefore, for S1, S2 P Sn ˆ
Sp, FTHS1ÑS2

has a time complexity in OpnTmax log Tmaxq.
Thus, Equation 5 is computed in OpTmax log Tmaxpn` pqq “
Opmaxtn, puTmax log Tmaxq

Therefore, when n and p are well below than Tmax (which
is our case in the next Experiments section), the computation
of FTH is much less greedy than other classical Optimal
matching measures.

To conclude this section, the Table III-B summaries ad-
vantages and main properties of each studied methods. We
note FTH checks main properties while keeping a better
computation time than states of the art measures on the
condition that sequences have few symbols (i.e., small n, p).

IV. EXPERIMENTS

In this section, we show the practical usage of our proposal
for human mobility mining in order to identify human behav-
iors based on the temporal sequences of activities. The first
part presents a running example which illustrates the fulfill-
ment of the properties showed in previous section, compared
to other measures. The second part exposes a comparison
between FTH and Hamming measures on real temporal se-
quences obtained from a French household Time-Use Survey
(TUS) focused on mobility, called EMD (Enquête Ménages-
Déplacements). The goal of this study, as the EMD survey,
is to provide a snapshot of the trips undertaken by residents
of a given metropolitan area, which can aid in understanding



(a) FTHΔ (b) Hamming (c) DTW (d) ED

(e) FTHγ (f) LCS (g) CED

Fig. 6. Dendograms of the temporal sequences in Figure 7 for different measures. Colors indicate pairs correctly clustered.

mobility behaviors. For simplicity, we call FTH∆ and FTHγ
to the instantiation of FTH with ∆ and γ costs, respectively.1

A. Running example

Figure 7 presents a sample of 6 temporal sequences inspired
in the EMD dataset. These temporal sequences are deliberately
exaggerated in order to highlight the expected properties of
the studied measures. Colored squares represents one hour (60
min) of activity. Sequences are made such that:
‚ Red couple pS1, S2q exhibits some permutations of activ-

ities. Indeed, both sequences contain the same activities,
but shuffled: There are close permutations between bus
( !) and work (!), and between walk ( !) and bus ( !),
and a more distant permutation between tramway ( !) and
work at home (!"

#

).
‚ Orange couple pS3, S4q shows a temporal shifting. In-

deed, S4 contains the same chaining of activities than
S3, with a shift of one hour.

‚ Blue couple pS5, S6q is similar to previous one but with
a greater shifting of 90 min. Moreover, the morning work
activity (!) in S5 is substituted by a similar one, work
at home (!"

#

), in S6.
Based on these temporal sequences, Figure 6 portrays the

dendrograms built using Hierarchical Clustering (HC) for each
measure studied in Subsection II-B. They are computed using
the Linkage algorithm with the Ward agglomeration method of
the Scipy library (1.4.1) in Python. Fuzzy contextual function
is set with a boundary of 4 hours.

Firstly, notice that sequences with small shifts (orange
couple) are well clustered with all tested methods except the
Hamming distance, while sequences with larger shifts and
similar activities (blue couple) are only correctly clustered

1Code, examples and experiments are fully available at https:
//colab.research.google.com/drive/1we6-mhgbQnJzdwaJX70z-ctOrTOdXJAi?
usp=sharing

!!!
"# !! !!Color symbol:

S3 =
S4 =
S5 =
S6 =

S1 =
S2 =

Fig. 7. Temporal sequences example

with FTH∆, FTHγ, DTW and CED, endorsing that such
methods are robust to time shifting. For permutations (red
couple), sequences are well clustered with FTH∆, FTHγ and
CED. We remark that LCS groups sequences S1 and S2 with
S5. Therefore, we see that temporal sequences are correctly
clustered with FTH∆, FTHγ and CED.

Nevertheless, we moderate these results by recalling that
the examples shown in this section are constructed to test the
validity of measures on the given properties. In particular, on
a real data set, it is expected that Hamming performs better.
Furthermore, from a computational point of view, Hamming
remains by far the best choice compared, for example, to the
CED measure which is inapplicable for large Tmax.

B. Clustering mobility

1) Dataset description: To test the applicability of FTH
compared to other measures, we apply them on a sample of
1200 temporal sequences extracted from the EMD dataset.
Symbols used are strongly similar to the ones exhibited in
Examples 1 and 4. They are organized in an semantic graph
(i.e., taxonomy) and can be pairwise compared using the Wu-
Palmer’s similarity measure [31]. See [20] for a complete
description of activities, and our code lab for more examples
and details.

https://colab.research.google.com/drive/1we6-mhgbQnJzdwaJX70z-ctOrTOdXJAi?usp=sharing
https://colab.research.google.com/drive/1we6-mhgbQnJzdwaJX70z-ctOrTOdXJAi?usp=sharing
https://colab.research.google.com/drive/1we6-mhgbQnJzdwaJX70z-ctOrTOdXJAi?usp=sharing
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2) Clustering methodology: In order to compare the Ham-
ming distance with FTH∆ and FTHγ, we applied three HC
models and studied the rearrangement of clusters.

According to the Silhouette score [24] and the inertia gap,
we set the number of clusters at 5 for each clustering process.
The time-boundary of the fuzzy contextual function µe is equal
to 12 hours in order to detect similar activities within morning
and afternoon.

Figure 8 shows the flows between clustering results. We
observe 10.5% of sequences rearrangement between Hamming
and FTH∆ clusterings. In order to illustrate one of these
rearrangements, Figure 9 details the flow between Hamming
C1 and FTH∆ C2 colored in purple in Figure 8. This flow con-
tains 46 temporal sequences detailed in (a), concerning people
studying ( !) in the morning and having leisure ( !) in the
afternoon, while Hamming C2 (b) concerns full-day students.
These sequences are merged in FTH C2 (c), evidencing that
FTH∆ supports the time dilation of symbols as long as the
context remains similar (in this case student typical days).

Concerning flows between FTH∆ and FTHγ, the large
number of rearrangements is due to the fact that FTHγ follows
a different paradigm. For FTHγ, the transformation cost can
be high even if the activity duration is short. For example,
the transformation of 10 min of walk can be as important as
the transformation of 4 hours of work. We plan to work with
experts to analyse the different clusters results and choose the
best variant according to the topic.

(a) Flow: Hamming FTH   C1 → Δ C2

(b) Hamming C2

(c) FTH   Δ C2

∪
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Fig. 9. Chronograms of sequences in (a) Flow from Hamming cluster C1 to
FTH∆ C2 (b) Hamming C2 and their merger in (c) FTH∆ C2

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a fuzzy extension of the
Hamming distance for temporal sequences called FTH. This
new measure improves the Hamming distance by introducing
a fuzzy time-window in order to be robust to temporal dis-
tortions like shifts and permutations, and to catch the global
context around a given period. These properties are particularly
required in domains like human mobility mining in order to
extract similar behaviors.

Based on an adaption of the edit operation cost function of
the Hamming distance, we proved that FTH satisfy previous
requirements while having a competitive time complexity
regarding other states of the art measures on sequences.
Moreover, FTH is generic and can be used on both continuous
or discrete sequences and in various domains.

Finally, FTH was experimentally tested on two datasets. A
first one of 6 tricky temporal sequences in order to check the
desired properties compared to other measures. The results
confirms that FTH outperformed them on the tested require-
ments, in particular concerning permutations of elements.
The second sample on real temporal sequences was used to
compare FTH with the Hamming distance in a clustering task.
We showed that FTH have the ability to gather sequences
whose context is close.

In future work, we plan to analyse in more detail the clusters
produced by the FTH variants – with ∆ and γ costs functions.
Additionally, we hope to test our new measure on larger and
more complex datasets.
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APPENDIX

Proof of Theorem 1

Proof. In order to simplify notations, we note gptq “

simeptq ˆ µeptq. Moreover, g is Riemann-integrable and we
note G such that G1 “ g.

We derive the function ∆peq with respect to the variable δ,
we have:

B∆

Bδ
peq “

B

Bδ

˜

δ ´ sup
τPI

#

ż τ`δ

τ

gptqdt

+¸

“
B

Bδ

ˆ

δ ´ sup
τPI

tGpτ ` δq ´Gpτqu

˙

“ 1´ sup
τPI

tgpτ ` δq ´ gpτqu

By Definitions 4 and 5, we know that @t P I, 0 ď gptq ď 1,
so we have: ´1 ď sup

τPI
tgpτ ` δq ´ gpτqu ď 1. Therefore,

B∆
Bδ peq ě 0, we conclude that ∆ is monotone increasing

according to δ.

Proof of Lemma 4

Proof. Let proof it by contradiction. We suppose DS1, S2 P

Sn ˆ Sp such that S1 ‰ S2 and FTHS1ÑS2 “ 0.
S1 ‰ S2 means that there exists a time-interval rt, t ` εq

with ε ą 0 such that S1 and S2 activities are different.
According to Equation 4, this result is possible if and only

if @i P rr1, nss,∆peiq “ 0. Because ∆peiq “ δ1i ˆ γpeiq
and δ1i is always strictly positive, we have to show that
@i P rr1, nss, γpeiq “ 0.

Thanks to Lemma 1, this result is possible if and only if
@i P rr1, nss, Dk P rr1, pss, Ipx1iq Ď Ipx2kq and x1i “ x2k.

Because
Ťn
i“1 Ipx1iq “ r0, Tmaxq and @i, j P rr1, nss, i ‰

j, Ipx1iq X Ipx1jq “ H. Thus, we deduce that the only way
to satisfy the assertion is for Ipx1iq “ Ipx2kq.

Moreover, we know that @i P rr1, nss, x1i “ x2k. Thus, we
conclude that S1 “ S2 which refutes our hypothesis.

Proof of Theorem 4

Proof. Given pS1, S2q P Sn ˆ Sp let compute FTHS1ÑS2
:

FTHS1ÑS2 “

n
ÿ

i“1

∆peiq

“

n
ÿ

i“1

δ1i ´ sup
τPI

#

ż τ`δ1i

τ

simeiptq ˆ µeiptqdt

+

Yet, we know that @ei P E such that ei “

px1i, δ1i,beginpx1iq, S2q, we have Supppµeiq “ Corepµeiq

so: simeiptq ˆ µeiptq “

#

simeiptq if t P Ipx1iq

0 else
. Thus, we

can restrict the integral on interval Ipx1iq. We have:

FTHS1ÑS2
“

n
ÿ

i“1

δ1i ´

ż

Ipx1iq

simeiptqdt

“ Tmax ´

n
ÿ

i“1

ż

Ipx1iq

p
ÿ

j“1

1Ipx2jqptqsimpx1i, x2jqdt

Similarly, we can limit the indicator function 1Ipx2jq to Ipx1iq

such that:

FTHS1ÑS2 “ Tmax ´

n
ÿ

i“1

ż

Ipx1iq

p
ÿ

j“1

1Ipx1iqXIpx2jqptqsimpx1i, x2jqdt

Finally, and because simeiptq “ 0 for t R Ipxi1q, we can
generalize the integral over I:

FTHS1ÑS2 “ Tmax ´

ż

I

n
ÿ

i“1

p
ÿ

j“1

1Ipx1iqXIpx2jqptqsimpx1i, x2jqdt

“ Tmax ´

n
ÿ

i“1

p
ÿ

j“1

|Ipx1iq X Ipx2jq|simpx1i, x2jq

The last expression satisfies the symmetry property and is
equivalent to the Hamming distance defined for continuous
temporal sequences. Therefore, it is already the same for
Equation 5 which concludes the proof.
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